
W H I T E P A P E R

Inside the
Yellowbrick
Data Platform

Contents

Introduction 3

Cloud Native Cluster Management 4

 Yellowbrick Instance Topology 4

 Implementation Using Kubernetes 5

 Tracking Consumption and Auditing Changes 5

Direct Data Accelerator® Architecture 6

 The Need to Optimize for Modern Computer Architecture 7

 Design of the Direct Data Accelerator® 8

 Threading, Processes, and Scheduling 8

 Device Access 9

 Local File System 9

 Network Data Exchange 9

 Object Store Access 10

 Cluster Parity Filesystem 10

Query Execution 11

 Storage Engine 11

 Row-oriented Store 11

 Column-oriented Store 11

 Locking and Transaction Management 12

 Hybrid Execution Engine 13

 Row-oriented and Column-oriented Execution 14

 Partitioning 14

 Storage Predicate Pushdown 15

 Query Compilation 15

	 Pattern	Compiler	(Regular	Expressions	and	Friends)	 16

 Code Caching 17

PostgreSQL Compatibility and Query Planning 17

 Compatibility 17

 SQL Dialect 17

 Query Planning 18

Query Processing and Workload Management 18

 Query Processing Flow 19

 Monitoring and Introspection 20

 Internal Details 20

 Resource Pools 20

 Rules 20

 Control Points 21

	 Profiles	 21

Availability and Business Continuity 22

 High Availability 22

 Protection for Data Stored in Cloud Object Stores 22

 Protection for Data Stored in On-premises Instances 23

 Backup and Restore 23

 SQL-native Backup and Restore 23

 Table Delete Horizon 23

 Types of Backup and Restore 24

 Readable Replicas 24

	 Asynchronous	Replication	for	Disaster	Recovery	(DR)	 24

 Failover and Fail-back 25

High-throughput, Parallel Data Movement 25

 Bulk Data Load and Unload 25

Streaming Data Movement 26

	 Concurrent	Loading	and	Querying	 26

Security, Systems Management, and Observability 26

	 Security	 26

	 Authentication	 26

 Manageability Without “Super Users” 27

 Role-based Access Control 27

 Encryption of Data at Rest 27

 Column-level Encryption and Functions 27

 TLS Support 28

 Observability 28

 Instance Observability 28

 Remote “Phone Home” Support 28

Summary 28

4

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Introduction

The Yellowbrick Data Platform is a cloud native, parallel SQL database designed for the most demanding batch, ad hoc,

real-time and mixed workloads. Fully elastic clusters with separate storage and compute run complex queries at

multi-petabyte scale with sub-second response times.

Yellowbrick innovates in three key areas:

• Security: Data is protected, compliance standards are met, and organizations retain complete control.

• Performance:	Unparalleled	speed	and	scalability	while	efficiently	consuming	resources	to	maximize	return	on	investment.

• Simplicity: SaaS-like management experience, familiar SQL RDBMS, no optimization required, and running Kubernetes for

unified	operations	across	any	environment.

This document explains the architectural approaches that support these innovations. They cross everything from the

creative usage of Kubernetes to cluster management, to data storage, to query planning and execution, and even the user

interface itself. Yellowbrick is designed to run Tier 1 enterprise-grade data platform with the following characteristics:

• Modern, elastic architecture: Elasticity, separate storage & compute, driven completely through SQL.

• Run in the customer’s cloud account: Yellowbrick customers pay for their own cloud infrastructure, make use of their

own cloud storage and control their own data security. Yellowbrick doesn’t see or store user data or queries.

• Run across all public clouds: At the time of writing, Yellowbrick supports AWS, Azure, and GCP public clouds.

• Run on-premises: Provide the same elastic user experience as in the cloud on-premises.

• Hardened SQL support: Yellowbrick can reliably execute complex ANSI-standard SQL queries across massive schemas,

supporting complex join hierarchies, correlated subqueries, deeply nested CTEs, stored procedures, etc.

• Execute complex workloads: Yellowbrick handles highly concurrent mixed workloads with continual bulk and real-time

ingest, merging, and highly concurrent queries with guaranteed quality of service through workload management. Full

ACID transaction semantics are present throughout the stack.

• Reliability: Yellowbrick is highly available and resilient to node, storage, and network failure. Workloads across compute

clusters are isolated from one another.

• Support for disaster recovery: Asynchronous replication of both data and DDL with read-only hot standby instances is

built in.

• Support for data retention and business continuity:	A	mature	enterprise-level	backup	scheme	for	off-site	data												

retention supports incremental, cumulative, and full backups and object-level restore.

• Mature ecosystem: Yellowbrick has enterprise support agreements with all major BI, ETL, data mining, CDC, and

machine learning vendors.

• Best query efficiency in the industry: Yellowbrick	executes	ad-hoc	queries	against	large	data	sets	incredibly	efficiently,	

making use of many technical innovations in query execution.

• Flexible pricing and consumption: Support for subscription contracts as well as workload management allows variable

numbers of concurrent users with a predictable price.

• Open interfaces: By making use of PostgreSQL’s wire protocols, *DBC drivers, and metadata schema, Yellowbrick is

comfortable for developers and DBAs to work with. Open-source integrations for tools like Kafka and Spark are standard.

5

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Yellowbrick isn’t a SQL-on-Hadoop type of product, or a solo query engine running on top of other open source

infrastructure. It’s a database that organizations can trust to store and be the system of record for their most valuable

enterprise	data,	and	to	generate	business-critical,	auditable	financial	reports	that	their	businesses	depend	on.	It	requires	

almost no management, tuning, diagnosing, or handholding and is familiar to modern developers accustomed to working

with PostgreSQL.

Cloud Native Cluster Management

Full elasticity with separate storage and compute is now a table stakes feature for any modern data platform. BigQuery

and	Snowflake	set	the	bar	here,	the	latter	allowing	explicit	control	of	clusters	(“virtual	warehouses”)	within	the	database	

through an expressive SQL grammar. Both technologies were conceived before Kubernetes was invented. Kubernetes

(K8s)	has	been	a	double-edged	sword:	On	one	hand,	it	provides	a	declarative,	standard,	and	portable	interface	for	running	

scale-out	applications	across	many	different	cloud	vendors	and	stacks	(aka	“the	new	cluster	operating	system”);	but	on	

the other, it places a burdensome and daunting management overhead onto the teams that run such clusters due to its

extreme complexity.

At Yellowbrick, Kubernetes is used internally to gain portability across cloud platforms without requiring end users to know

anything	about	it.	Users	never	touch	or	see	Kubernetes,	a	helm	chart,	pod,	node,	operator,	or	configuration	file	and	aren’t	

aware	they	even	exist.	The	user	experience	largely	mirrors	that	of	Snowflake:	creating,	growing,	and	destroying	compute	

clusters through SQL utility statements, and viewing the state of the scale-out data warehouses through SQL tables. Users

simply	provision	a	warehouse	and	create	an	elastic	cluster	through	one	line	of	SQL	(or	a	few	clicks	of	the	UI)	and	off	they	go.

Yellowbrick Instance Topology

Each instance is a fully independent database supporting multiple elastic compute clusters with separate storage and

compute. Data warehouse instances are independent of one another but can be managed through a single pane of glass

with the Yellowbrick Manager. There is no coupling of availability between instances, and an error in one instance cannot

affect	another	instance.	Each	instance	is	deployed	into	one	Kubernetes	namespace.	Figure	1	shows	the	components	that	

make up each instance:

6

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

The instance pod is the front end of the database. It provides shared services such as connection management, metadata

schema, and query planning. The entire instance can be suspended and resumed. Yellowbrick’s row-oriented storage for

real-time ingest is also located in the instance pod to provide the lowest possible commit latency. No query execution oc-

curs	on	the	instance	pod;	query	execution	is	deferred	to	elastic	compute	clusters.

Virtual Compute Clusters are required to write data and execute SQL queries. Each compute cluster operates

independently of one another. SQL utility statements support creating clusters, assigning users to clusters, suspending,

resuming, and resizing. Since multiple compute clusters work on the same shared data, which is cached locally and

persisted	in	object	storage,	different	clusters	can	be	used	for	different	purposes.	For	example,	spinning	up	a	cluster	on	

demand	to	perform	ETL,	having	a	different	cluster	for	business-critical	reports	vs.	ad-hoc	queries,	or	simply	creating	more	

clusters to support higher levels of concurrency.

Query compilation services turn SQL statements into vectorized, executable code. Query plans and compiled code

are aggressively cached for re-use. Query compilation services pods scale up and down automatically based on CPU

consumption.

Bulk data movement services support bulk loading and unloading of data and scale out automatically, depending on the

number of concurrent requests. System tables are provided for querying the current state of all the above services. For

example, sys.cluster shows the current state of all elastic compute clusters.

Implementation Using Kubernetes

SQL-based management of elastic compute clusters is implemented using Kubernetes while hiding details from the users

and DBAs. When SQL commands to scale compute clusters or supporting services are issued, the Instance pod uses the

Kubernetes	API	to	create	or	alter	underlying	API	objects	(for	example,	pods,	namespaces,	configmaps,	and	events)	and	

monitor	progress	in	affecting	the	changes.	Similarly,	when	querying	system	views	to	examine	the	state	of	clusters,	the	

Instance pod executes Kubernetes API requests to list the relevant objects, join the Kubernetes API objects with locally

stored metadata, and return the view to the user.

The very existence of Kubernetes is never exposed to users, but by leveraging this containerized, cloud-native

architecture, Yellowbrick gains trivial portability across all the public clouds and modern on-premises infrastructure. This

“SQL	user	interface	for	Kubernetes”	is	a	Yellowbrick	innovation	that	is	not	available	in	other	data	platforms;	most	don’t							

support the management of elasticity and scaling through SQL, and those that do aren’t implemented on top of Kubernetes.

It also becomes possible to embed and scale Yellowbrick inside other microservices-based, cloud-native applications, even

to the point of automating instance creation and provisioning through provided GraphQL APIs.

Tracking Consumption and Auditing Changes

All changes in the level of billable resources are captured in system tables. The core unit of consumption in Yellowbrick is the

vCPU/second	of	cluster	compute	resources	used;	this	is	aggregated	hourly	and	daily	and	can	be	queried	through	system	

tables, summarizing by user or by cluster, etc.

7

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Direct Data Accelerator® Architecture

The algorithms used by most databases built in the last two decades have several consistent core assumptions:

• Databases	executors	should	cache	data	in	a	buffer	cache	in	memory	to	avoid	reading	too	much	data	from	disk.

• Core	operators,	such	as	joins,	sorts,	and	aggregates,	should	use	a	buffer	pool	to	transparently	support	spilling	data	to	

disk in case memory capacity is exceeded.

• Keeping	more	data	“in	memory”	is	the	way	to	better	performance	–	after	all,	CPUs	can	copy	memory	far	faster	than	they	

can move it from the storage or network.

• Tight integration with Linux provides performant storage and network IO and threading.

Yellowbrick turns most of these assumptions on their heads because on modern servers available in the cloud and

on-premises, it’s now the case that:

• The	maximum	effective	bandwidth	of	reading	data	from	high	performance,	direct	attached	storage	can	be	the	same	as	

from main memory.

• Moving data across the network can be less resource-intensive than copying it from/to main memory.

• The CPU can run 10x faster if processing data from caches, rather than from main memory.

• Linux	simply	can’t	scale	IO	effectively	at	the	levels	of	concurrency	offered	by	today’s	servers.

These advances in core computer architecture have allowed us to build the Yellowbrick database engine in a manner that

supports	much	more	efficient	query	execution	than	other	databases.	It’s	not	uncommon	to	find	Yellowbrick	using	1/4	or	less	

vCPU resources per query than competitors, resulting in substantial cost savings for customers.

To	take	advantage	of	the	latest	technology,	Yellowbrick	developed	a	software	data	path	that’s	much	more	efficient	than	

that available in Linux. Linux’s limitations are quite widely known in the network security and low-latency stock trading

community, where the most advanced software developers will talk about using OS bypass technologies such as DPDK or

OpenOnload	with	Linux	hugepages	to	fix	such	problems.	However,	these	leading-edge	technologies	from	Intel	and	others	

are	far	too	restrictive	to	be	sufficiently	general	purpose	for	running	a	parallel	database	engine.

Yellowbrick’s	own	OS	bypass	technology	is	specifically	designed	for	analytic	database	engines	and	–	due	to	recent																

advances	in	Kubernetes	and	container	architecture	–	can	be	used	in	any	standard	container	environment.

Yellowbrick has developed:

• A	networking	stack	for	high-speed	data	exchange	between	parallel	processing	nodes	that’s	up	to	20x	more	efficient	

than built-in Linux.

• A	storage	I/O	stack	and	file	system	with	1/100	of	the	cost	per	IO	compared	to	standard	Linux.

• An S3-style object storage stack that supports all three cloud providers at 1/10 of the CPU usage compared to the

vendors’ own software.

• A process and thread management subsystem with no measurable overhead.

• A cluster-based scheduler to allow synchronized query execution across cluster nodes.

• A memory management approach optimized for the above.

8

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

We’ll discuss some of these innovations below.

The Need to Optimize for Modern Computer Architecture

Today’s servers are routinely available with over a terabyte of memory and over 100 CPU cores, and the trend of more cores

and memory is set to continue. Running generic software on these instances does not work well because operating system

schedulers	were	built	to	wait	for	events	and	“context	switch.”	Threads	wait	for	events	–	such	as	a	keypress,	a	network	

packet	arriving,	a	storage	I/O	completing	or	synchronization	primitives	becoming	available	–	and	switch	between	competing	

threads	and	processes	to	try	to	be	as	fair	as	possible	and	use	buffers	efficiently.	As	a	result,	it’s	not	uncommon	for	modern	

databases to do tens of thousands of context switches per second per CPU core, and millions of them per second in

aggregate.

Conventional	wisdom	states	that	if	you’re	not	spending	much	CPU	time	context	switching	–	under	10%	–	you’re	in	good	

shape;	context	switches	are	cheap	with	a	good	operating	system.	However,	this	assumption	is	outdated.	Modern	CPUs	

get their performance from processing data from their caches, typically called L1, L2, and L3. The L1 cache contains data

pertinent to the most recent processing, the L2 cache is larger but slower to access, and likewise the L3 cache. The L1

cache per CPU core is measured in tens of kilobytes, the L2 cache in hundreds of kilobytes, and the L3 cache in

single-digit megabytes. If you were to look at the speed at which you can access data on a modern CPU, you’d see ratios

like those shown in Table 1.

When	the	CPU	context-switches	inside	a	database,	the	different	contexts	may	be	doing	tasks	such	as:

• Running a hash join of two tables for Tim.

• Sorting data for Torben.

• Running a hash join of two tables for Marc.

• Waiting	to	look	up	a	block	in	the	filesystem	for	Mark	to	scan	a	table.

• Preparing data to send over the network in TCP packets for Jason.

Each of these tasks is accessing its own large data structures and dealing with its own cached data. Each context switch

requires moving new data in and out of the CPU caches, invalidating data that was there before.

One might ask, “Well, what if we were to be able to do these tasks sequentially: Finish Tim’s join, then Marc’s join, then

9

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Torben’s sort, then Mark’s work, then Jason’s? Doing things one at a time, we’d do less context switching and use our caches

more	efficiently,	right?”	This	is	partly	true,	but	it	doesn’t	end	there:	The	minute	Joe’s	join	needs	to	send	data	over	the	

network,	the	CPU	enters	the	Linux	networking	stack	–	around	100,000	lines	of	complex	code	that	will	do	a	great	job	

changing	memory	mappings,	filling	the	caches,	and	evicting	Joe’s	hash	tables,	only	to	force	them	to	be	reloaded	from	main	

memory when the network processing is done. Similarly, if Joe’s join needs to read a new disk block, it will enter the Linux I/O

stack	and	filesystem,	and	hundreds	of	thousands	of	lines	of	code	and	complex	data	structures	will	also	handily	displace	his	

hash tables.

When this context switching and bouncing in and out of complex Linux kernel subsystems is happening continuously

across	dozens	of	cores,	any	modern	CPU	will	struggle	to	work	efficiently.	The	DBAs	will	be	none	the	wiser	because	the	CPU	

will	be	100%	utilized,	but	under	the	covers,	the	database	is	achieving	only	a	fraction	of	its	theoretical	maximum	efficiency.	

Therefore, most data platforms today support very low levels of concurrency.

Design of the Direct Data Accelerator®

Yellowbrick’s Direct Data Accelerator® implements a new execution model to work around the issues above by eliminating

measurable context switching overhead and penalties associated with accessing storage, the network, and other hardware

devices. This is done with a new, reactive programming model for the entire data path. Some of the principles of this new

programming model are described below.

Threading, Processes, and Scheduling

Yellowbrick has a new threading model based on reactive concepts such as futures and coroutines. Small, individual units

of work called tasks are scheduled and run to completion without preemptive context switching. Tasks do not have stacks

associated	with	them.	Tasks	in	Yellowbrick	never	block	(as	far	as	the	OS	is	concerned)	and	no	stacks	are	preserved	when	

waiting	for	futures;	instead,	it’s	up	to	the	caller	to	optimally	preserve	state	in	either	per-thread	data	structures	or	lambdas.	

Although tough for general-purpose programming, in a constrained environment such as a database, this model is tractable

and	offers	massive	efficiency	improvements.

Yellowbrick implements synchronization primitives as well as parallel iterators to protect access to shared resources.

Awareness	of	multiple	CPU	cores	and	NUMA	nodes	is	intrinsic	to	the	system	from	top	to	bottom:	The	author	of	code,	written	

in assembly or C++, makes deliberate decisions as to the parts of the compute complex on which to run. Optimal memory

allocations, from the closest or most recently cached data structures, will be provided automatically to the runtime, and

even	the	handling	of	bizarre	modern	CPU	artifacts	(such	as	cache	aliasing	of	stacks)	is	built	in.

In	a	traditional	OS,	a	process	comprises	threads	that	execute.	Yellowbrick	implements	a	different	type	of	process	model:	

A work comprises tasks that execute in a fully asynchronous, reactive manner. Works have their own memory arenas from

which to allocate, which are torn down together, and all resource consumption of the work is bounded and isolated by the

kernel: what fraction of CPU it can use, how much memory, how much compute, how much disk storage, and so on.

The	scheduler	is	aware	of	works	and	tasks	and	will	try	not	to	intermix	the	execution	of	tasks	from	different	works	to	further	

10

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

avoid cache displacement. It even goes one step further and tries to ensure that, when database queries are exchanging

large	amounts	of	data	(such	as	re-distributing	data	for	a	large	join),	the	same	work	is	running	on	peers	in	the	cluster	at	

exactly the same time, such that received data may be processed immediately. Multi-tasking is cooperative, rather than

preemptive.

Works are created programmatically from built-in code, or dynamically loaded and unloaded at runtime, just like processes

in	Linux.	The	latter	approach	is	used	by	the	database	for	runtime	query	loading	and	unloading.

Device Access

The database needs to access network devices, storage devices, and hardware accelerators when available. Traditional

device drivers run in the Linux kernel and interrupt execution whenever something happens. In contrast, all Yellowbrick

device	drivers	are	asynchronous	and	polling	in	nature.	Access	to	drivers	is	always	via	queue	pairs	–	command	and	

completion	queues	–	with	well-defined	interfaces.	Drivers	are	present	for	general	PCIe	devices,	NVMe	SSDs,	various	

network adapters, and so on, all of which work without Linux’s involvement. In cases where Yellowbrick is running without

bypass	being	available,	emulated	drivers	for	each	class	(network,	storage,	etc.)	are	present	that	fall	back	on	the	Linux	kernel	

or software emulation.

Local File System

Yellowbrick	implemented	a	local	file	system	called	BBFS	(Big	Block	File	System),	that	builds	on	top	of	the	device	access	layer	

to	provide	a	full	namespace	on	top	of	raw	storage	devices.	It	provides	most	expected	file	system	semantics	–	directory	

management,	creating	files,	open,	close,	read/write,	readv/writev,	delete,	rename,	etc.	–	but	is	implemented	completely	

asynchronously.

Metadata	and	metadata	locks	are	heavily	sharded	to	maximize	concurrency.	The	file	system	metadata	itself	is	tiny,	fitting	in	

indexed	in-memory	structures	for	fast	lookups.	A	read()	operation	on	a	file	can	be	submitted	through	the	entire	file	switch,	

file	system,	and	device	drivers	in	only	a	few	hundred	CPU	cycles.

Network Data Exchange

Like	many	modern	microservices-based	software	stacks,	Yellowbrick	is	implemented	in	a	variety	of	different	languages:	

Primarily C, C++, and Java, with a sprinkling of Go and Python where necessary. These services need to talk to each other.

For	maximum	efficiency,	Yellowbrick	contains	a	highly	efficient	communication	framework	called	YBRPC	that’s	optimized	for	

the	latest	server	instances.	Several	different	underlying	YBRPC	transports	are	in	use:

• YRD	(Yellowbrick	Reliable	Datagram):	This	is	built	using	Intel’s	DPDK	library	for	OS	bypass.	It’s	a	datagram-orient	protocol	

that implements checksums and re-transmissions as needed to guarantee reliability and be able to route across sub-

nets. Due to wide support for DPDK, we use this protocol on all cloud-based instances. YRD enables zero-copy sends

and single-copy receives with a fraction of the CPU overhead of TCP.

• RDMA	(Remote	Direct	Memory	Access)	is	a	networking	technology	used	to	move	data	directly	between	the	memory	of	

servers	as	efficiently	as	possible.	It	works	over	both	Ethernet	(where	supported)	and	InfiniBand	fabrics,	primarily	for	

11

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

on-premises instances. Sends and receives are both zero-copy and latency is measured in nanoseconds.

• Linux	TCP:	A	transport	layer	for	generic	kernel-based	TCP	which	is	used	when	other	more	efficient	transports	are	not	

available.

• Unix	Domain	Socket:	When	processes	are	known	to	execute	on	the	same	node,	this	is	more	efficient	than	using	a	TCP	

socket.

The	custom	network	stacks	pay	substantial	dividends	in	query	execution	efficiency:	Yellowbrick	benchmarks	have	clocked	

a	single	CPU	core	sending	and	receiving	16GB/sec	of	data	across	the	network	in	the	MPP	fast	path,	with	time	to	spare.	

When using the Linux kernel, around 1.5GB/ sec is the limit and the CPU core is fully loaded, leaving no time whatsoever for

data	processing.	YBRPC	allows	expensive	parts	of	database	queries	–	such	as	re-distribution	of	data	for	joins,	aggregates	

(GROUP	BY),	and	sorting	–	to	run	10x	more	efficiently	than	competing	databases,	using	a	fraction	of	the	resources.

Object Store Access

In cloud architecture, local storage is ephemeral, so the only way to reliably persist data is by writing it to some form of

remote	storage,	and	Amazon	S3/Azure	ADLS/GCS	object	storage	is	the	most	cost	effective.	Remote	storage	has	issues	

with latency, though, so to maximize bandwidth and IOPS, large IO queue depths across many targets must be correctly

pipelined.	The	client	libraries	from	the	cloud	vendors	are	incompatible	and	all	third-party	libraries	are	incredibly	inefficient,	

performing gratuitous data copying and dealing poorly with pipelining the massive numbers of outstanding operations

needed to drive high bandwidth. By developing a custom asynchronous user-space HTTP stack and object store library,

CPU	consumption	is	reduced	to	around	3%	of	Amazon’s	library.	Direct	attached	storage	is	used	as	a	cache	for	blocks	on	

object	storage	to	further	increase	processing	efficiency	in	the	cloud.

Cluster Parity Filesystem

To lower costs while improving availability and reliability for on-premises deployments, Yellowbrick built a stacked,

higher-level	cluster	filesystem	called	ParityFS.	It	sits	on	top	of	BBFS,	implementing	the	same	POSIX-subset	interface	in	an	

asynchronous, reactive fashion, but provides the the system with resilience against data loss in the event of node failure.

In a traditional database, such resilience is provided by “mirroring” or “replicating” multiple copies of data: Typical database

deployments will store two or three copies of data across nodes so that, in the event of node failure, another node in the

cluster can replace the work of the failed node. However, doing so will lead to that node performing twice as much

computation	(since	2x	more	data	needs	to	be	processed),	leading	to	substantially	slower	query	processing	performance	

due to the added “skew” in query processing.

Yellowbrick	has	implemented	erasure	coding	similar	to	RAID-5	or	RAID-6	in	a	disk-drive	configuration	but	at	file	level	rather	

than block level. The scheme provides the same level of redundancy as writing three copies of data but without the storage

overhead.	As	files	are	written	in	parallel	across	the	cluster,	reconstruction	data	is	written.	If	a	node	is	lost,	the	files	it	was	

storing	are	virtually	reassigned	to	all	the	other	nodes	in	the	cluster	and	reconstructed	on	the	fly	when	read	–	such	that	all	

nodes in the cluster share the processing work of the failed node. The data writing and data reconstruction processes use

the massive amount of parallel computation and high network throughput available, such that in the rare event of nodes

failing,	the	overhead	added	to	typical	database	queries	is	under	5%.	At	the	time	of	writing,	Yellowbrick	production	

customers that have experienced node failures never even noticed performance degradation.

12

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Query Execution

The	Yellowbrick	database	engine	is	responsible	for	taking	query	plans,	performing	computation	on	data	–	reading	and	

writing	as	necessary	–	and	returning	answers.	There	are	four	major	software	components,	all	built	from	scratch	by	Yellow-

brick: The Storage Engine, the Execution Engine, the Workload Manager, and the Query Compiler.

Storage Engine

The	Storage	Engine	stores	structured	data	(two-dimensional	tables	with	rows	and	columns).	It’s	designed	to	scale	from	

tables with as few as one row to tables with trillions of rows and thousands of columns, occupying petabytes of storage

space.	Almost	all	the	data	stored	in	the	database	is	stored	in	a	column-oriented	store,	and	large	loads	of	data	are	written	

directly to this store. Recent real-time or streaming data is stored in a row-oriented store instead. When the row-oriented

store reaches a certain size, data is automatically moved to the column-oriented store. The storage engine is ACID

compliant;	transactions	semantics	are	consistent	between	both	the	row-oriented	store	and	column-oriented	store,	

and queries automatically look at all the data present in both stores.

Row-oriented Store

The	row-oriented	store	(row	store)	is	a	scale-up	storage	engine.	It’s	optimized	for	low	commit	latency	for	real-time	streams,	

such	as	those	from	Kafka	or	CDC	tools.	When	streaming	data	(such	as	INSERT	statements	in	small	transactions)	arrives	in	

the database, the most important thing for it to do is commit the data as fast as possible and return control to the client

so it can continue. The number of real-time, streaming commits per second is thus a function of commit latency, and the

fastest path to the lowest possible latency is to avoid networking and commit to disk.

Rows	are	stored	in	a	log-oriented	structure	in	which	multiple	files	are	kept	per	table	per	CPU	core,	and	new	rows	of	data	are	

appended	in	real	time.	It’s	stored	on	mirrored,	highly	available	storage	volumes:	For	cloud	instances,	on	EBS-like	volumes;	

for on-premises instances, on four-way replicated SSDs. When a given table’s row store approaches a size where it will have

a	measurable	impact	on	query	performance,	it	is	flushed	in	the	background	to	the	columnoriented	store.	Users	and	admins	

need	not	concern	themselves	with	this	flushing	process.

The row store contains a high-bandwidth streaming optimization: When an incoming stream is copying many rows in a

transaction	without	committing,	the	row	store	can	transparently	switch	its	operating	mode	to	one	where	it	passes	the	data	

directly through to the columnstore without writing intermediate data to disk. Upon commit, the data will be persisted to

the columnstore instead.

Column-oriented Store

The	column-oriented	store	(columnstore)	is	where	most	data	in	Yellowbrick	resides.	Columnar	databases	are	nothing	new,	

and	the	benefits	for	analytic	workloads	–	improving	compression	ratios	and	reducing	the	amount	of	scanned	data	–	are	well	

known, so much so that most analytic databases now store their data in columns rather than rows.

13

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Yellowbrick	has	been	creative	about	how	the	column-store	indexes	and	finds	data	efficiently	on	SSD	media	and	cloud	

storage. The columnstore runs entirely within the Yellowbrick Direct Data Accelerator®. Static partitioning is not required

to	achieve	acceptable	performance:	As	tabular	data	is	written,	rows	are	distributed	across	storage	nodes	in	the	cluster	into	

multiple partitioned units called shards, which represent around 200MB of compressed data. Data within each shard is laid

out in a columnar fashion, so data from individual columns can be read and processed without having to read the whole

shard.	Rows	may	be	reordered	before	the	shard	is	written	by	“clustering”	data	on	as	many	as	four	columnar	keys.	Clustering	

allows the database to group related rows, such that if, for example, queries often select rows by time and by customer,

clustering	on	both	columns	will	make	accessing	such	data	more	efficient.	Clustering	is	rarely	necessary	due	to	the	

staggering	throughput	of	Yellowbrick,	and	won’t	make	much	of	a	difference	to	large,	intensive	queries,	but	it	can	help	you	

find	small	amounts	of	data	(“needle-in-a-haystack”	queries)	even	more	efficiently	by	making	built-in	indexes	work	better.

As	shards	are	built	and	written,	Yellowbrick	builds	granular	indexes	and	compresses	data.	Yellowbrick	uses	several	

compression	techniques,	with	a	primary	focus	on	the	CPU	efficiency	of	decompression	rather	than	using	the	minimum	

amount of storage because storage costs are cheaper than compute costs. For each column within the shard, the indexes

store common distinct values, a data structure for computing cardinality statistics, and the ranges of values present.

These values are stored per shard, and hierarchically within each shard, per 4KBto-32KB disk block, and within that, per

small group of rows. This is a far more granular index structure than that used by traditional analytic databases. That’s

possible because the storage engine has been designed for SSD storage, which excels at large numbers of random disk

çoperations	(IOPS).	When	one	can	execute	tens	of	millions	of	IOPS	while	consuming	a	barely	measurable	amount	of	CPU,	

table scans can be turned into massive numbers of random I/O operations to avoid reading as much data as possible.

Doing so allows Yellowbrick to read only the minimal amount of pertinent disk blocks needed for each table scan, but this is

done carefully to keep queue depths low enough to minimize L3 cache usage. Achieving massive bandwidth with tiny queue

depths	requires	an	extraordinarily	efficient	IO	framework.

Since statistics are stored along with every shard and automatically recombined, there’s no need to worry about keeping

statistics	up	to	date.	Yellowbrick	deletes	rows	in	the	columnstore	by	writing	deleted	row	identifiers	to	new	files	alongside	

the shards. It handles row updates by deleting the old rows and inserting new ones into a new shard. A consequence of

this	design	approach	is	that	Yellowbrick	is	incredibly	fast	at	running	large	bulk	updates	and	deletes	but	less	efficient	at	

small random ones. A built-in garbage collector periodically sweeps up fragmented shards, removes deleted rows, and

recombines	them	efficiently.	In	Yellowbrick,	it	does	this	incrementally	in	very	small	units	of	storage,	so	that	–	unlike	in	older	

databases	where	performance	suffers	greatly	during	vacuuming	–	there	is	no	measurable	impact.	These	processes	do	not	

need to be initiated by a DBA.

The architectural approach means that over time, for update-oriented and delete-oriented workloads, shards will retain

garbage	(old	rows	of	deleted	data)	and	storage	efficiency	will	drop.	However,	the	benefits	of	writing	and	recombining	

immutable shards of data enable us to implement functionality like data snapshots and time travel relatively easily. The

former	is	already	productized	for	the	backup	and	restore	functions,	and	the	latter	is	a	committed	roadmap	item.

Locking and Transaction Management

Yellowbrick, being an enterprise-class database, implements full ACID transactions. The isolation level provided universally

14

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

is READ COMMITTED. Locking is performed at the table level. The Yellowbrick transaction log comes from PostgreSQL

and	is	solid,	with	decades	of	production	use.	Locking	is	built	using	a	multi-version	concurrency	control	(MVCC)	approach.	

Regardless of how much updating, deleting, or loading is taking place, readers still see the data as of the transaction they

are in. Readers never block each other. Generally, writers block other writers and will queue behind each other. However,

there are isolated cases where more than one writer is allowed into a table:

• Multiple “bulk loads” can run concurrently into one table.

• Bulk loads can run concurrently with other update and delete operations.

• Data	flushes	from	the	row	store	into	the	columnstore	can	run	concurrently	with	bulk	loads.

Hybrid Execution Engine

Just as the database stores data in both rows and columns, Yellowbrick also executes queries in a row-oriented or

column-oriented fashion. The execution engine, otherwise known as the “EE”, is modeled after packet-processing frame-

works,	just	like	networks.	SQL	operators	are	like	nodes	in	the	network,	and	packets	flow	over	the	links	between	the	nodes.

Query Topology and Flow Control

A query planner turns a SQL query such as:

into a hierarchy of SQL operators. In the case of this simple query, the query plan contains two table scan nodes and a join

node.	Data	flows	from	the	bottom	of	the	tree	up	to	the	top	of	the	tree,	where	it’s	returned	to	the	user.

In	the	EE,	queries	are	represented	by	graphs	rather	than	trees.	The	nodes	in	the	query	graph	are	the	operators	–	such	as	

table	scan,	join,	or	sort	–	and	the	edges	connecting	the	operators	are	links.	Graphs	allow	us	to	plan	and	execute	complex	

query topologies, such as a table scan that feeds multiple consumers of data at the same time. The job of the EE is to

execute	the	query	graph	optimally.	Data	flows	from	the	leaves	of	the	graph	toward	the	root	of	the	graph.	As	data	is	handed	

between nodes in the graph, it’s placed into packets that may contain row-oriented or column-oriented data. Packets are

sized to make optimal use of L1 and L2 cache memory, so they can be kept core local as they move between nodes. Flow

control is required, just like in networks, to ensure that memory usage and queue depths of packets are bounded to stay

cache-resident. This is because some nodes may produce far more packets than they consume, such as an outer or cross

join, whereas others may produce far fewer, such as an inner join with few matching rows.

In	contrast	to	traditional	databases	that	use	“iterators”	to	pull	data	from	the	top	of	a	tree	(the	“volcano	model”),	Yellowbrick	

uses a more sophisticated approach that lets us tightly control resources, where grants are handed toward the leaves and

data	flows	in	the	reverse	direction.

The Distribution operator, which moves data packets across the physical network between MPP nodes, also uses the same

flow	control	and	backpressure	approaches	–	in	essence,	extending	the	EE	graph	to	be	global	across	MPP	nodes.

SELECT a,b FROM foo INNER JOIN bar on foo.p=bar.f

15

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

	The	network	buffers	are	the	packets	themselves	and	they	can	be	transmitted	and	received	in	place	with	no	data	copying	

when supported by the underlying YRPC transport.

The entire EE framework is fully multi-core and NUMA-aware. Wherever possible, packet processing is kept primarily

core-local	and	secondarily	NUMA-node-local;	but	in	the	event	of	skew,	reallocation	of	packets	across	cores	on	a	NUMA	

node	will	take	place	first,	followed	by	reallocation	across	NUMA	nodes	if	necessary.	This	affinity	of	packets	and	operators	to	

cores and NUMA nodes also extends across the MPP network.

Row-oriented and Column-oriented Execution

It’s	optimal	to	process	data	in	different	ways	depending	on	the	type	of	SQL	operator	node	in	question.	The	EE	supports	

row-oriented and column-oriented packets. For example, the Distribution operator, which moves data packets across the

physical network between nodes to implement MPP execution, wants to operate in a row-oriented fashion because rows of

data	will	be	transmitted	to	different	MPP	nodes	depending	on	the	hash	of	a	column	in	the	row.	Likewise,	the	Join	operator	

combines	rows	from	two	different	tables	and	concatenates	them.

On the other hand, the table scan node prefers to operate on columnar data straight from the Storage Engine, where it can

take	advantage	of	vectorized	execution.	Vectorization	allows	us	to	apply	efficient	SIMD	(AVX)	instructions	to	build	

incredibly	efficient	predicate	filters,	expression	calculators,	or	bloom	filters	that	can	operate	on	multiple	values	in

one CPU instruction, but it requires that data is laid out in a manner that is amenable to the instructions.

Partitioning

Like	many	OLTP	and	OLAP	databases,	Yellowbrick	supports	a	SQL	syntax	for	partitioning	tables.	Admins	can	define

partitioning schemes on a per-table basis. Currently, hash partitioning and range partitioning are the available schemes.

Most	MPP	databases	implement	partition	pruning	at	the	planner	level	to	find	data	more	rapidly	by	sub-setting	the	data	that	

needs	to	be	scanned.	In	Yellowbrick	there’s	no	need	for	partition	pruning	because	shard	indexing	is	so	efficient.	Instead,	

all	knowledge	of	partitions	is	pushed	down	to	the	executor	itself.	DBAs	configure	Yellowbrick	to	use	partitioning	solely	to	

reduce memory usage for massive joins or aggregates. Consider two examples:

1. A	hash	join	of	two	massive	tables	with	perhaps	hundreds	of	billions	of	rows	(a	fact-to-fact	join).	The	traditional	

2. approach would be to build a hash table on the smaller side of the relation and scan the larger side, looking up each row

and	emitting	the	joined	result.	The	hash	table	is	still	huge,	occupying	a	massive	amount	of	memory	and	likely	forcing	

the query to spill.

3. A	billing	query	for	complex	call	data	record	(CDR)	time-series	data,	with	more	than	1	billion	subscribers,	summing	call	

costs by phone number and call. For a large telecom operator with hundreds of millions of subscribers making large

numbers of calls per day, the hash table for the GROUP BY operator would surely be gigantic and spill to disk.

In the case of example 1, if both hash tables are partitioned identically, the join can be executed a partition at a time

because it’s known that the data in the partitions is non-overlapping. If 1,000 partitions were chosen, 1,000 smaller joins

16

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

would be performed rather than one massive join, using 1/1000 of the necessary memory. The query will execute faster and

will not spill. Similarly, for example 2, rather than running one giant aggregate, if it is known that the CDRs have been

partitioned by hour, the query can run one aggregate per hour and incrementally emit the result.

Yellowbrick accomplishes this by adding partition iterator nodes to the query plan. Partition iterators repeatedly reset and

re-run	all	downstream	operators,	once	for	each	possible	partition	value,	incrementally	emitting	results.	This	is	a	far	more	

sophisticated	approach	than	naive	planner	partition	pruning	and	yields	substantial	benefits	in	runtime	efficiency	by

reducing memory utilization and eliminating spilling for many complex queries.

Storage Predicate Pushdown

The	Yellowbrick	Storage	Engine	maintains	various	granular	indexing	structures	to	efficiently	find	data	that’s	necessary	and	

avoid data that isn’t. For example, if you run a simple query:

The executor will pass the predicate age<24 to the storage engine to enable it to return only rows matching the criteria.

Yellowbrick	does	both	static	predicate	pushdown	–	identifying	predicates	derived	during	query	planning	such	as	described	

above	–	as	well	as	dynamic	predicate	pushdown,	which	adds	additional	predicates	to	queries	at	runtime.	Static	predicates	

are	identified	at	plan	time,	but	the	actual	values	are	injected	at	runtime	to	enable	parameterized	queries	to	make	use	of	

pushdown functionality.

Runtime predicates are generated by joins as well as SQL constructs that perform similar operations to joins, such as large

IN	lists	or	sequences	of	OR	criteria,	which	are	internally	rewritten	to	semi-joins.	The	runtime	predicates	typically	take	the	

form	of	bloom	filters,	pushed	down	after	generating	the	build	sides	of	hash	tables.	Yellowbrick	also	creates	BETWEEN	

predicates from the minimum and maximum values present in the build sides of joins, which helps in surprisingly common

cases where there is correlation between the two tables.

Query Compilation

All queries in Yellowbrick are aggressively compiled to CPU instructions to run as fast as possible, in their entirety.

Yellowbrick contains no interpreter and no just-in-time compiler for queries. Memory management in queries is explicit,

with no garbage collection. Yellowbrick contains a SQL compiler built from scratch called Lime. Lime’s job is to consume the

output of the query planner and generate code to execute the query. It understands the Execution Engine and the reactive

programming model. Lime’s processing consists of multiple phases:

• Produce	an	abstract	syntax	tree	(AST)	for	the	incoming	query	plan,	converting	query	plan	nodes	to	execution	engine	

operators.

• Perform a type optimization phase.

• Apply	several	optimization	passes	on	the	AST:	rearranging	data	to	be	contiguous	in	memory,	static	evaluation,																	

reordering of memory accesses, fast-path deduction, and so on.

SELECT * FROM person WHERE age<24;

17

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

• Emit	code	(including	inline	assembler)	corresponding	to	the	AST.

• Compile	the	code	using	the	optimizing	LLVM	compiler	infrastructure.

LLVM Compilation

Lime	uses	a	modified	version	of	the	LLVM	compiler	infrastructure	to	generate	machine	code.	LLVM	itself	can	generate	highly	

optimized code. The EE framework and SQL operator templates are built in C++. They use inline-able injector functions:

It’s	not	just	the	“core	loops”	of	the	operators	that	are	compiled;	the	code	implementing	the	entire	operator	is	ultimately	

expanded	to	one	set	of	code	that	can	be	aggressively	optimized	by	LLVM.

This	is	a	relatively	expensive	process,	especially	in	a	single-threaded	compiler	such	as	LLVM.	To	provide	interactive	

queries	quickly,	Lime	will	split	each	query	into	multiple	exclusive	segments	–	segments	for	which	in-lining	code	from	other	

segments	would	add	no	value	–	that	can	be	both	generated	and	then	compiled	in	parallel	across	multiple	CPU	cores.	

To	further	lower	latency,	we	have	modified	LLVM	to	allow	it	to	remain	memory-resident	in	a	state	with	its	own	ASTs	

preloaded.	If	compilation	becomes	a	bottleneck,	the	compile	service	itself	is	elastic	and	horizontally	scalable,	and	more	

pods will be spun up.

This parallelization allows simple queries to be compiled and executed in milliseconds, while very large, complex queries can

still compile within a couple of seconds, fast enough for interactive analytic queries.

Pattern Compiler (Regular Expressions and Friends)

Regular expressions and LIKE operations have historically been slow when run against large data sets. To improve execution

speed,	Yellowbrick	implements	a	special	compilation	framework	called	the	pattern	compiler.	The	pattern	compiler	currently	

supports	the	following	input	patterns:

• SQL LIKE

• SQL SIMILAR TO

• POSIX-compatible	regular	expressions

• Date/time parsing

The	pattern	compiler	generates	highly	optimized,	deterministic	finite	state	machines	for	each	unique	pattern.	The	set	of	

state	transitions	is	optimized	and	compiled	into	optimal	machine	code	by	the	LLVM	compiler	infrastructure	and	then	loaded	

on	the	fly	into	running	SQL	queries.	All	POSIX	regular	expression	functionality	is	supported,	including	all	character	classes,	

operators,	and	capture	groups.	The	pattern	compiler	supports	backtracking	and	analyzes	subexpressions	to	determine	

whether	a	faster	deterministic,	or	slower	nondeterministic,	finite	automaton,	is	necessary	on	a	per-operator	basis.	Storage	

predicate	pushdown	is	performed	for	the	starting	characters	of	all	patterns.

Yellowbrick has one of the fastest database regular expression implementations ever created, if not the fastest. At the time

of	this	writing,	the	Yellowbrick	database	contains	no	support	for	interpreting	or	doing	JIT	compilation	of	patterns	so	it’s	not	

possible	to	store	a	regular	expression	in	a	table	column	and	use	it	in	a	query;	however,	you	may	supply	patterns	as	runtime	

parameters in queries.

18

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Code Caching

Although code compilation is fast, latency is still minimized by saving milliseconds of compile time for short, tactical queries

and seconds of compile time for large, complex ones. To do that, the query compiler contains multiple layers of caching.

Efficient	and	reliable	caching	requires	care	and	attention:	A	given	query	has	a	huge	quantity	of	dependencies,	from	

execution engine templates to the version of the C++ runtime, versions of libraries, the query plan in use, the statistics of

the query, and so on. Yellowbrick factors all these dependencies to try to reuse as much previously compiled object code as

possible.

PostgreSQL Compatibility and Query Planning

We use open-source technology for external access to the database. PostgreSQL is the logical choice: Its SQL support is

very	close	to	ANSI	standard,	with	a	track	record	of	adoption	in	other	data	warehousing	platforms	(Amazon	Redshift,	IBM	

Netezza,	Vertica,	and	so	forth).	Furthermore,	PostgreSQL	has	become	perhaps	the	coolest	and	fastest-growing	relational	

database, with a thriving ecosystem of developers and users contributing to its success.

Compatibility

The	front	end	of	the	Yellowbrick	database	derives	from	PostgreSQL	9.5.x.	Yellowbrick	periodically	merges	fixes	and	

enhancements	from	newer	PostgreSQL	versions	where	it	makes	sense.	Yellowbrick	is	not	a	PostgreSQL	fork;	if	you	write	an	

analytic	query	against	Yellowbrick,	more	than	99%	of	the	machine	instructions	will	be	running	against	the	new	Yellowbrick	

code.	The	core	parts	of	PostgreSQL	–	many	parts	of	the	query	optimizer,	the	storage	engine,	and	the	execution	

engine	–	have	been	entirely	replaced	in	Yellowbrick.

Access to Yellowbrick is typically accomplished via standard PostgreSQL ODBC/JDBC/ADO drivers. This is a deliberate

choice because it allows the database to interact with numerous ecosystem tools. That said, PostgreSQL’s wire protocols

are	not	particularly	efficient,	so	Yellowbrick	is	actively	developing	custom	higher	performing	*DBC	drivers	while	continuing	

to maintain Postgres compatibility. PostgreSQL’s metadata catalogs are also supported for interoperability with standard

tools and will be familiar to admins and developers alike.

SQL Dialect

At	the	time	of	this	writing,	Yellowbrick	supports	the	following	SQL	data	types:	Booleans;	integer	types;	decimal	types;	

floating	point	types;	UUID,	CHAR,	and	VARCHAR;	date	and	time	types;	and	some	new	data	types	for	IP	addresses	and	MAC	

addresses.	INTERVAL	is	supported	as	an	intermediate	data	type	and	cannot	be	stored.	TEXT	is	present	for	PostgreSQL	

compatibility	and	internally	aliases	to	VARCHAR(64000).

PostgreSQL’s SQL dialect has been extended with functions for Oracle, Microsoft, and Teradata compatibility, and a new,

SQL-based	user-defined	function	(UDF)	grammar.	Stored	procedures	written	in	PL/pgSQL	are	supported.	Partitioning	is	

supported.	Advanced	PostgreSQL	functionality	such	as	XML,	JSON,	geospatial	SQL,	and	other	programming	languages	for	

server-side	programming	(Python,	Perl,	TCL,	and	so	forth)	are	roadmap	items.

19

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Numerous utility commands have been added to the SQL grammar for tasks such as managing the workload management

subsystem,	controlling	elastic	clustering,	and	loading	and	unloading	data	from	external	sources.	You	can	find	a	full

description of Yellowbrick SQL support in the product documentation.

Query Planning

Yellowbrick has replaced, extended, and altered many parts of the PostgreSQL query planner. Query planning is a large and

complex subject with entire papers devoted to individual optimizations. Here’s a partial list of examples in Yellowbrick:

• MPP awareness, with cost-based estimation of network data exchange.

• MPP	plans	for	all	standard	primitives	(joins,	aggregates,	sorts,	distinct	counts,	and	so	on)	and	data-distribution	nodes	

for hash-distributed, replicated, and randomly distributed data sources.

• Join algorithm replacement, with a new estimator and costing model that uses metadata, histograms, implied

equalities, and uniqueness inference.

• Scan selectivity algorithm replacement.

• Support for various forms of correlated subqueries.

• Support for using and combining incremental statistics using big data algorithms.

• Query auto-parameterization to support plan re-use.

• Support for partitioning and adding partition iterators to query plans.

• New data type hierarchy to match other enterprise databases and remove the need for excessive explicit type casting

in expressions.

• Late-bound views, wherein views are evaluated when accessed, so database objects referenced by views can be

dropped and recreated.

• Support for expression aliases.

• Normalizing in-lists, semi-joins, and OR-lists.

• Support for planning graphs rather than just trees.

• Reimplementation of estimation for aggregates.

• Filter push-down improvements for table scans.

• New	EXPLAIN	interface.

• Constant folding.

• Static elimination of relational operators and expressions.

Changes	to	the	security	model	to	eliminate	“super	users”	have	also	affected	the	query	planner	to	some	degree;	see	the	

Security, Systems Management, and Monitoring section for details.

Query Processing and Workload Management

When	a	user	submits	a	SQL	command	that	involves	query	processing	–	henceforth	referred	to	as	a	“query”	–	to	Yellowbrick	

via ODBC/JDBC/ADO.NET, the query is passed through several subsystems in its journey through the Yellowbrick database

software	stack.	At	the	bottom	of	the	stack,	the	query	ends	up	in	the	Storage	Engine	and	Execution	Engine,	at	which	point	it	

generates results. The results are then passed back up the stack and returned to the user.

20

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

During this journey, what starts as a simple piece of SQL text is enriched with more metadata and information. The workload

management subsystem is present throughout the lifetime of the query, allowing it to be measured, monitored, routed,

prioritized, and adjusted as it travels down and back up the software stack. The adjustments relate to both the query itself,

as	well	as	to	limits	on	resource	consumption.	The	Workload	Manager	allows	DBAs	and	users	(with	prerequisite	permission)	

to see what’s going on as well as to change the nature of the routing to ensure business goals are met. For example:

Certain business-critical reports may be a higher priority than anything else going on in the system.

“Bad	actor”	rogue	queries,	perhaps	written	by	users	with	poor	working	knowledge	of	SQL,	should	not	affect	other	users.

ETL tasks shouldn’t consume more resources than necessary.

Query Processing Flow

Each query goes through the state transitions shown in Figure 2. The meanings of these stages are generally

self-explanatory.	When	a	query	is	submitted,	little	is	known	about	it:	its	text,	who	submitted	it,	which	machine	and	client	it	

came from, and when. After parsing, a query is planned by the query planner, at which time a lot more information is known:

which tables it looks at, its cost, and estimates of resource consumption. It’s at this point that any table-level locks

necessary to execute the query are acquired. Query fragments are assembled and then compiled to native code by the

LLVM	compiler	infrastructure,	at	which	point	the	query	may	wait	to	acquire	the	necessary	resources	(memory,	disk,	

processing	power)	to	execute.	The	query	then	runs,	at	which	point	it	sends	results	back	to	the	client	and	is	then	marked	

as	done.	Queries	can	be	canceled	or	moved	into	an	error	condition	at	any	point	in	the	flow.

21

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Monitoring and Introspection

The Workload Manager is the single source of truth for everything executing in the database. It records, for every query in

the system, when that query entered a given processing state and how much time it spent there. Through system tables,

users can view this information for all queries currently executing in the database as well as previously completed ones.

As one would expect for an enterprise-class database, runtime statistics are measured for every query. Statistics include

how much CPU was consumed, how much IO was driven, how many rows were processed, and the sizes of data structures

such as hash tables in joins. These statistics are logged on a per-query as well as a per-query-plan-node basis and can be

consumed raw in the database or graphically in a web browser via Yellowbrick Manager.

Internal Details

Yellowbrick’s Workload Manager can proactively allocate and manage the following system resources:

• Persistent	storage	space	–	through	disk	quotas.

• Spill space.

• Memory.

• CPU	–	through	priorities.

Resource Pools

Each	Virtual	Compute	Cluster’s	available	resources	are	divided	into	pools.	Queries	are	routed	to	a	given	cluster’s	pool	by	

rules	executing	within	the	Workload	Manager	(see	Rules	below).	There	may	be,	for	example,	a	small	pool	for	DBAs	to	make	

sure	they	are	always	able	to	acquire	sufficient	resources	to	kill	queries,	a	pool	for	short-running,	tactical	queries,	and	a	pool	

for long-running ones.

A	pool	has	associated	with	it	a	certain	level	of	concurrency	it	can	support,	which	may	be	fixed	or	flexible.	Fixed	concurrency	

is	useful	when	it	is	known	that	only	a	certain	amount	of	concurrency	is	possible	or	desired,	whereas	flexible	concurrency	is	

a good idea for random queries by data scientists. Queries slow down as they spill more, and it is desirable to have queries

run faster when there are fewer users on the system, and slower when there are more users on the system.

Rules

At various points in the execution of a query, Workload Manager rules can introspect what’s going on, and perform various

actions:	cancel	the	query,	route	the	query	to	a	different	pool,	prioritize	it,	or	alter	its	resource	consumption.	A	query	can	also	

be	throttled	according	to	a	named	semaphore	–	for	example,	to	limit	every	business	user	to	submitting	at	most	two	

concurrent	queries	or	ensure	a	misconfigured	ETL	tool	doesn’t	overload	the	system	with	concurrent	singlerow	retrievals.

22

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Workload	Manager	rules	are	written	in	JavaScript,	providing	incredible	flexibility.	Properties	about	the	system	and	each	

executing	query	are	available	via	standard	JavaScript	properties,	and	actions	such	as	pool	assignments,	throttling,	logging,	

resource assignments, and recording errors can be accomplished through JavaScript methods. To reduce the runtime

overhead of evaluating rules, all the JavaScript rules are compiled into native code for rapid execution.

Some DBAs are not comfortable writing JavaScript, so within the browser-based Yellowbrick Manager is an intuitive

point-and-click IF/ELSE rule builder for the Workload Manager. The JavaScript generated by the rule builder can be seen

alongside and tweaked if desired. For users who prefer not to use a GUI, a full SQL utility grammar is present for creating,

modifying, and controlling workload management rules.

Control Points

Many	different	types	of	rules	operate	at	different	control	points	in	the	system.	Typical	deployments	don’t	need	to	

implement numerous rules or sophisticated behaviors, but some customers with massive, operational warehouses that

support	multiple	lines	of	business	tend	to	make	maximum	use	of	the	flexibility:

• Submit rules are run before queries enter the parser. They allow queries to be rejected by rules that allow matching by

SQL text or source IP address.

• Assemble rules are evaluated when the query is building the artifacts required for query compilation before it is

submitted	for	compilation.	A	common	task	at	this	stage	is	to	set	the	initial	priority	of	the	query	which	helps	govern	

progress and resource usage in later phases.

• Compile rules run during the pre-execution phase for a query, prior to when a resource pool being selected. Rules

written	for	this	stage	of	execution	have	more	information	from	the	resource	planner	and	are	commonly	created	at	this	

phase	for	pre-execution	concerns.	Various	actions	can	be	taken	at	this	stage,	including	imposing	limits	on	execution	

time	and	memory,	setting	query	priority,	or	selecting	a	resource	pool.

• Restart	rules	are	evaluated	when	a	query	encounters	an	error	condition	that	allows	it	to	be	restarted	automatically	–	for	

example, to re-run it with more resources or log the event.

• Runtime rules execute periodically during query execution and can introspect the state of the query along with its run-

time statistics: how long it’s been executing, what resources it’s consumed, or the state of its query plan. At runtime,

queries	that	haven’t	returned	data	to	the	user	can	be	transparently	moved	between	pools	–	perhaps	with	differing	pri-

ority	or	resource	limits	–	or	rejected.	SNMP	traps	and	alerts	can	be	generated	for	external	systemsmanagement	tools.	

This is how you can be sure that misestimated, long-running queries don’t get in the way of tactical ones, or that “bad”

queries	are	placed	in	a	penalty	box	such	that	they	don’t	affect	other	users.

• Completion rules are evaluated once when execution steps are completed or stopped, due to the query running to

completion, being canceled, or erroring out.

Logging capabilities are available to trace rule execution. Rules have priorities and are evaluated in priority order.

Profiles

A	container	of	rules	is	called	a	profile;	profiles	may	be	imported	and	exported	to/from	JSON	to	move	them	between	

instances.	Each	elastic	compute	cluster	has	an	active	profile	that	can	be	changed	at	any	time.	If,	for	example,	an	insurance	

23

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

company	needs	to	prioritize	workloads	differently	for	closing	the	books	at	the	end	of	the	month,	it	can	switch	profiles	to	

enable this only for the days necessary.

Availability and Business Continuity

Yellowbrick has been designed for high availability and a degree of fault tolerance, and with support for backing up and

restoring data, replicating data, and storing data on cloud object stores. No third-party tools, services, or “enterprise

editions” are needed.

Yellowbrick	is	designed	for	data	warehousing	and	analytics	rather	than	online	transaction	processing,	so	“five	nines”	of	

availability	–	99.999%	uptime	–	is	not	a	requirement.	Five	nines	allow	only	about	five	minutes	of	downtime	per	year	and	

necessitate no maintenance windows, fully online upgrades, and the like. Yellowbrick’s architecture is centered around

achieving	“threeand-a-half	nines”	per	instance	–	99.95%	availability	–	allowing	about	4.5	hours	of	downtime	per	year.	This	

allows time for scheduled downtime for short quarterly maintenance windows to support software upgrades, along with

a small amount of unscheduled downtime due to infrastructure failures or occasional software bugs. Yellowbrick doesn’t

claim to have mainframeclass or Oracle-class stability and availability, but its track record is excellent: Yellowbrick routinely

backs	production,	online,	ad	hoc	24/7/365	business-critical	financial	applications	for	many	Fortune	500	customers	with	

minimal unscheduled downtime.

Yellowbrick’s	storage	and	compute	can	scale	elastically;	resizing	clusters,	creating	new	ones,	or	adding	storage	capacity	

(for	on-premises	instances	only)	are	all	online	activities	that	do	not	require	maintenance	windows.

High Availability

Yellowbrick is clustered software, running on multiple server nodes. The software is redundant to component failure, drive

failure, and entire node failure with minimum user disruption. Running in the cloud, failed nodes are replaced by new ones as

they	become	available;	on-premises,	failed	nodes	are	left	out	of	the	cluster	until	a	replacement	is	installed.	For	more	details	

about onpremises hardware instances, see the “Andromeda Optimized Instances” whitepaper.

Protection for Data Stored in Cloud Object Stores

For instances running in public clouds, as well as on-premises instances accessing cloud storage, all column store shard

files	are	persisted	to	cloud	object	stores.	In	Amazon,	this	means	S3;	in	Azure,	ADLS;	and	in	GCP,	GCS.	A	fraction	of	local	

direct	attached	SSD	storage	is	used	as	a	block-level	(not	file	level)	cache	for	data	persisted	in	object	stores.	The	block	

cache is scanresistant such that large table scans where data is only used once will not evict hot data from the cache.

Cache misses result in the given block/s being requested from the cloud object store directly. Due to the massive

parallelism needed to achieve good read performance from object stores, table scans will do a substantial read-ahead.

For	writing	table	data,	shard	files	are	written	through	to	the	cloud	object	store,	and	the	transaction	is	only	committed	once	

the object store has acknowledged the write.

24

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Protection for Data Stored in On-premises Instances

Yellowbrick’s	cluster	filesystem	ParityFS	protects	against	data	loss	due	to	node	failure.	It	implements	n+2	erasure	coding,	

such that two nodes in every parity group can be lost in their entirety due to node failure, or partially due to SSD failure.

Data	is	reconstructed	on	the	fly,	and	when	drives	or	nodes	are	replaced,	the	original	data	is	rebuilt.	The	difference	in	query	

execution	performance	and	throughput	is	unnoticeable;	failure	of	a	node	or	SSD	results	in	a	cluster	reconfiguration	event	

which causes momentary service degradation.

Backup and Restore

The Yellowbrick Storage Engine can take transactionally consistent snapshots of all the data in a database at any time.

These snapshots are low overhead, leverage the transactional nature of the database, and are completed in a fraction of a

second.	The	snapshot	metadata	itself	occupies	very	little	storage;	however,	active	snapshots	impose	constraints	on	

garbage collection such that the system will use more storage space until the snapshots are dropped.

The snapshots are per-database and include all tables, including system catalog tables: Those that store the database

schema	objects	such	as	tables,	columns,	and	constraints;	as	well	as	roles,	workload	management	rules,	and	other	system	

configurations.	In	the	roadmap,	the	snapshot	functionality	will	be	exposed	to	support	“time	travel”	queries	for	general	SQL	

use.

SQL-native Backup and Restore

Backup and restore operations are implemented as SQL operations to leverage the high throughput of the Yellowbrick

database engine. By performing delta queries against transaction snapshots, the system can select only the rows that

have been added, updated, or deleted between two transactions for backup. Changed rows are then compressed in parallel

on	all	nodes	for	increased	performance;	backups	are	not	simply	rigid	copies	of	files	in	the	filesystem.

Restore is also implemented as a SQL operation and is analogous to bulk data loading. All nodes in the cluster receive

backup	data.	It	is	decompressed	and	decoded	in	parallel	on	all	workers	and	new	data/changed	data	is	written	to	the	

Yellowbrick Storage Engine.

Table Delete Horizon

The	history	of	different	types	of	database	backups	–	full,	incremental,	or	cumulative	–	together	forms	the	backup	chain	

for that database. Each chain is a logical grouping of snapshots, each representing a discrete point in time. As a result,

each backup chain has an implicit “delete horizon,” a transactionally consistent point in time for the database after which

deleted space cannot be fully reclaimed. Deletes made after the horizon point in time leave behind “tombstone” markers in

the storage engine that occupy tens of bytes per row. Backups move the delete horizon forward in a way such that deltas of

previous backups can still be taken.

25

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Types of Backup and Restore

Backups work one database at a time. Each backup requires the creation of a new snapshot. Yellowbrick supports three

types of backups:

• Full backups are complete backups of an entire database. A full backup is typically done once, to initiate a new backup

chain and rarely thereafter. Full backups tend to be very large and can be thought of as a set of all changes between the

first	transaction	and	the	backup	transaction	snapshot.

• Cumulative backups capture all the changes since the last cumulative or full backup snapshot, whichever is more

recent, and advance the table delete horizon.

• Incremental backups capture all the changes since the last incremental, cumulative, or full backups, whichever is more

recent, but do not advance the table delete horizon.

Yellowbrick also supports incremental restores so that deltas captured by an incremental or cumulative backup can be

applied	without	having	to	restore	the	entire	database.	For	the	data	and	schema,	this	is	straightforward;	for	other	parts	of	

the system catalog, various merge strategies are used. More advanced backup strategies are possible but have not been

implemented.

Readable Replicas

A hot standby database is a database that is in read-only mode while receiving continuously applied incremental restores.

Yellowbrick allows hot standby databases to be queried and used, including the creation and deletion of temporary tables

as needed by reporting and BI tools. In addition, a database can be placed in a purely read-only mode to “freeze” an

environment.

Asynchronous Replication for Disaster Recovery (DR)

Yellowbrick contains full support for unidirectional asynchronous replication, to be used for establishing a DR site.

Replication can be between on-premises and cloud instances, and across cloud vendors, as desired. No third-party utilities

are required for replication. Both DDL and data are replicated. Replication takes place over TLS-secured TCP sockets and

is	interruptible:	In	the	event	of	socket	failure,	the	replication	process	will	pick	up	roughly	where	it	left	off	and	continue	from	

there. The target databases for replication must be hot standby databases, enabling them to be actively used for queries

while receiving writes.

The replication process does place some additional query load on both databases. Replication is transactionally consistent,

with	data	written	to	the	target	in	one	transaction	to	guarantee	consistency	for	users.	Where	possible,	an	initial

replication	target	should	be	seeded	using	backup-and-restore	functionality.	Replication	is	configured,	managed,	and

monitored through full SQL utility grammar and system tables. Currently, replication is supported from one source database

to one target database. Multi-target support is not currently productized.

26

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Failover and Fail-back

In Yellowbrick, failover is not automated because it is considered a rare event. Individual instances are highly available and

protected, so failover is only necessary in the event of a mass loss of connectivity or a true natural disaster. The database

will ensure that no split-brain scenario has occurred whenever replication takes place by checking transaction sequences

and	database	configuration	between	the	source	and	target.	If	inconsistency	is	detected,	manual	intervention	is	required.	

Fail-back after failover is fully supported but note that bi-directional replication, where both databases are accepting

changes, is not supported.

High-throughput, Parallel Data Movement

Data analytics platforms need to be able to ingest and unload large amounts of data rapidly. Sometimes data ingest and

extraction	needs	to	be	done	in	batch	mode	with	as	much	throughput	as	possible;	whereas	other	times,	the	data	movement	

needs to be done in a streaming fashion for real-time queries. Sometimes the data movement is best initiated through SQL.

Sometimes it’s taken care of by modern pipelines built with Kafka and/or Spark. And in traditional deployments, it’s initiated

as part of a complex set of scripts involving ETL tools. Yellowbrick caters to all these scenarios.

Bulk Data Load and Unload

Yellowbrick	contains	an	efficient	binary	protocol	for	parallel	bulk	loading	and	unloading.	Data	is	streamed	to	or	from	the	

database	in	parallel,	across	multiple	network	sockets	(typically	one	socket	per	node	in	the	cluster).	The	bulk	protocol	is	

row-oriented and supports compression.

These protocols are designed for batch operation. Large unloads complete in one shot, and large loads will commit a few

massive	transactions	periodically.	Format	transformations	such	as	parsing	and	formatting	are	done	by	the	sender	(for	

loads)	and	receiver	(for	unloads)	to	reduce	load	on	the	database.	Bulk	operations	pump	data	directly	from/to	the

Yellowbrick Storage Engine.

These operations typically are bound by the speed of the network. The ways of initiating bulk data movement with

Yellowbrick are:

• Through	SQL:	Using	the	built-in	utility	statements	such	as	CREATE	EXTERNAL	STORAGE,	CREATE	EXTERNAL	FORMAT,	

CREATE	EXTERNAL	LOCATION	and	LOAD	TABLE.

• Through pre-existing integrations with products such as Kafka, Spark, Informatica, Oracle Golden Gate, etc.

• Through	traditional	cross-platform	client	tools	that	run	on	everything	from	Windows	to	AIX:	ybload	and	ybunload.

• Through Java integrations with a Yellowbrick-provided data loading library.

Progress of loads and unloads, regardless of whether they are initiated using client tools or SQL, can be monitored through

system	views.	A	variety	of	file	formats	are	supported	including	Apache	Parquet	as	well	as	traditional	delimited	data	and	BCP	

files.	Yellowbrick	Manager	also	enables	browsing	and	loading	of	data	through	a	web	browser.

27

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

Streaming Data Movement

Because	bulk	data	is	committed	in	large	chunks,	and	socket	negotiation	across	clusters	is	required	to	initiate	the	process,	

it’s	an	inefficient	way	to	load	and	unload	small	numbers	of	rows.	For	small	unloads,	the	ODBC/JDBC/ADO.NET	(henceforth	

“*DBC”)	drivers	will	suffice,	and	PostgreSQL’s	built-in	\copy	command	is	a	good	shortcut.

For	loading	small	numbers	of	rows	in	a	streaming	fashion,	you	can	use	*DBC	INSERT	statements,	or	alternatively,	\copy.	With	

a few parallel clients, when loading data directly into the roworiented store, rates of several million rows/sec are achievable.

Unlike	bulk	loads,	which	are	committed	in	huge	batches	of	hundreds	of	millions	of	rows,	row-store	transactions	can	be	

committed	frequently	–	even	once	per	row,	if	desired.

Unlike	other	data	platforms	that	struggle	to	do	streaming	ingest	efficiently,	the	hybrid	nature	of	the	Yellowbrick	Storage	

Engine allows it to easily ingest large numbers of small transactions and query the most recent data, along with historical

data,	in	a	transactionally	consistent	fashion.	This	is	ideal	for	integrations	with	CDC	tools	(Oracle	Golden	Gate,	HVR)	or	an	

enterprise	message	bus	(Kafka).	There’s	no	need	to	worry	about	micro-batching	or	writing	custom	code	to	combine

reporting from transactional and analytic databases.

Concurrent Loading and Querying

Yellowbrick	can	efficiently	query	tables	as	data	is	being	written	to	them.	Large	bulk	loads	or	data	merges	running	in	parallel	

will not alter query performance in any unexpected ways. Consequently, it’s possible to have databases with a very high

level of churn that can handle large numbers of concurrent, ad hoc queries at the same time. Some Yellowbrick customers

have	databases	hundreds	of	terabytes	in	size	where	each	day	30%	of	the	data	continuously	changes.

Security, Systems Management, and Observability

Enterprise-class	databases	must	be	secure,	and	easy	to	manage,	monitor,	and	configure.	Yellowbrick	has	a	variety	of	

mechanisms that cater to the needs of enterprise customers running in private and public clouds, in both HIPAA-compliant

and regular deployments.

Security

Yellowbrick is built assuming everything is “private by default.” Default access controls to areas of the product are limited.

Private S3 buckets are enabled by default, with no public access to data. No built-in guest user accounts are present, and

strict access must be granted to all data and management functionality. Because the Yellowbrick runs in a customer’s own

cloud account, Yellowbrick by default has no access to customer data, customer queries, or logs. Companies have full

control of who has access and what they can access.

Authentication

Yellowbrick’s	authentication	is	based	on	OpenID	Connect	(OIDC)	and	supports	authentication	with	all	OIDC-compliant	

identity	providers	such	as	Azure	Active	Directory	(aka	Office365),	Okta,	and	Ping.	OIDC	authentication	allows	companies	

28

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

to continue to maintain identities and roles in their existing identity providers making the management of users easier to

maintain. On-premises Yellowbrick instances can authenticate with LDAP and Active Directory, also synchronization of

roles between external identity providers and the database is supported. For business-critical activities, the Yellowbrick

database supports local user authentication to allow operations to run in case connectivity to external authentication is

unavailable.

Manageability Without “Super Users”

PostgreSQL relies on having a “super user” for administration and regular users for everything else. The super user can

administer anything whatsoever, much like the “root” user on a Unix system. Although the front end of the database is

based	on	PostgreSQL,	privileges	afforded	to	the	super	user	have	been	deliberately	split	into	dozens	of	different	grants	to	

allow	users	to	manage	subsections	of	the	database	in	a	far	more	fine-grained	manner	–	for	example,	the	ability	of	a	role	to	

manage other roles, view SQL query text of other users, initiate backups, control LDAP integrations, and even the ability to

grant privileges themselves all can be granted or revoked individually.

Role-based Access Control

Role-based	access	control	allows	mapping	roles	to	specific	database	access	controls.	Roles	are	granted	and	revoked	

using already existing identity provider management tools, such as adding a role to a user in Active Directory. Access to all

database schema objects is fully role-based. Roles can be used to grant access down to column granularity. PostgreSQL

administrators will be familiar with this concept.

Encryption of Data at Rest

Encryption of data on cloud object stores is managed by the object store itself and ephemeral cloud storage is also

encrypted	and	crypto-erased.	Yellowbrick	on-premises	instances	store	all	data	fully	encrypted	with	AES-256	using	keys	

stored	in	HashiCorp	Vault.

Column-level Encryption and Functions

Yellowbrick provides a variety of SQL functions for data encryption, decryption, and hashing using several algorithms.

Individual	VARCHAR	columns	within	tables	can	be	designated	as	encrypted	so	that	Yellowbrick	will	encrypt	the	data	for	the	

column as it’s inserted. When a user with access to the corresponding encryption key executes a query, they will see the

decrypted	data;	however,	users	without	access	to	the	encryption	key	will	see	only	the	encrypted,	scrambled	data.	Keys	are	

stored	in	and	referenced	from	the	built-in	HashiCorp	Vault.

Yellowbrick has a production-quality integration with partner Protegrity which provides sophisticated, policy-based data

protection and masking functionality that goes beyond Yellowbrick column-level encryption.

29

In
si

de
 th

e
Ye

llo
w

br
ic

k
Da

ta
 P

la
tf

or
m

TLS Support

All	communication	over	the	wire	is	encrypted.	TLS	1.2	is	required	for	all	traffic	in	and	out	of	Yellowbrick.	This	is	true	for	*DBC	

access and web access and all external connectivity, loading, unloading, backup, and so on. TLS mutual authentication is

used for authentication of crossdatabase replication sessions.

Observability

Instrumentation and statistics gathering in the database are visible through system views. A number of additional

integrations are available to allow the database to be observed, monitored, and alerted upon in customer environments.

Instance Observability

Yellowbrick Manager includes an observability stack consisting of Prometheus, Loki, and Grafana. These cloud-native

technologies are used to aggregate logs from the database, delivered via FluentBit, and raise alerts in the event of issues

being found. Prometheus alertmanager is used to deliver alerts to such typical receivers as Slack, Opsgenie, PagerDuty, etc.

On-premises installations of Yellowbrick are also able to deliver alerts via SNMP and logs through remote syslog.

User-configured	alerts	can	be	raised	by	the	Workload	Manager	and	are	raised	automatically	when	user	disk	quotas	are	

exceeded. Other alerts pertain to unexpected errors in the database, such as software crashes or replication falling behind.

Remote “Phone Home” Support

Yellowbrick is designed with a SaaS user experience in mind, regardless of whether the database is running in a private data

center or the public cloud. Yellowbrick optionally maintains remote, unidirectional connectivity to Yellowbrick’s internal SaaS

monitoring platform. Any crash minidumps, key telemetry, and key logs are sent back over this phone-home connection to

enable Yellowbrick’s Customer Success team to monitor customer systems 24/7. In the event of any issues, Yellowbrick will

know	about	them	first.	Different	levels	of	data	scrubbing	guard	personal	identifiable	information	(PII)	and	other	confidential	

data. No customer data is ever shared. Customers with strict security requirements can disable Phone Home completely.

Summary

This whitepaper describes how Yellowbrick rebuilt the cloud database software stack by leveraging Kubernetes and modern

computer architecture to implement a modern, fully elastic SQL analytic database with separate storage and compute. By

revisiting	key	assumptions	in	database	architecture,	Yellowbrick	delivers	the	most	efficient	data	platform	in	the	industry	

with	flexible	deployment	in	customers’	own	cloud	accounts	or	on-premises.

Copyright © 2025 Yellowbrick Data, Inc. All rights Reserved.

